LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

M.Sc. DEGREE EXAMINATION - MATHEMATICS
 SECOND SEMESTER - APRIL 2010

ST 2902 - PROBABILITY THEORY AND STOCHASTIC PROCESSES

Date \& Time: 26/04/2010 / 1:00-4:00 \qquad
PART-A

Answer all the questions

$10 \times 2=20$

1) If $A \subset B$, show that $P(A) \leq P(B)$.
2) If A and B are independent events, show that A^{C} and B^{C} are also independent.
3) Define the MGF of a random variable X.
4) Find the constant C, if the following represents the probability distribution of a random variable

$$
\mathrm{p}(x)=C\left(\frac{1}{3}\right)^{x}, x=1,2,3 \ldots
$$

5) Define a Markov chain.
6) When do you say that state i of a Markov chain is transient or recurrent?
7) The joint pdf of the random variables X_{1} and X_{2} is given by

$$
\mathrm{f}\left(x_{1}, x_{2}\right)=6 x_{2} \quad 0<x_{2}<x_{1}<1 \text {. Find the marginal pdf of } X_{1} \text {. }
$$

8) Define the covariance between two variables X_{1} and X_{2}. What happens to the covariance when they are independent?
9) State any two properties of normal distribution .
10) Explain Renewal process .

PART-B

ANSWER ANY 5 QUESTIONS

11) A bowl contains 16 chips of which 6 are red, 7 are white and 3 are blue . If 4 chips are taken at random and without replacement find the probability that a) all are red
b) none of them is red
c) atleast 1 chip of each colour .
d) exactly 2 of them are blue .
12) Show that the distribution function is non decreasing and right continuous .
13) Let the joint pdf of the two random variables X_{1} and X_{2} be

$$
\begin{aligned}
& \mathrm{f}\left(x_{1}, x_{2}\right)=x_{1}+x_{2}, 0<x_{1}<1, \quad 0<x_{2}<1 . \text { obtain } \\
& \mathrm{E}\left[\mathrm{X}_{2} / \mathrm{X}_{1}=x_{1}\right] \text { and } \operatorname{var}\left[\mathrm{X}_{2} / \mathrm{X}_{1}=x_{1}\right] .
\end{aligned}
$$

14) State and prove Chapman Kolmogrov equation for a discrete time Markov chain .
15) Obtain the MGF of binomial distribution. Hence obtain mean and variance.
16) Derive the Kolmogrov Backward diffrential equations for a Birth death process.
17) State and prove Bayes theorem .
18) If the states i and j communicate, then show that $d(i)=d(j)$.

PART-C

ANSWER ANY TWO QUESTIONS

19) a) State and prove addition theorem for n events .
b) Let $\left\{A_{n}\right\}$ be an increasing sequence of events. show that $P\left(\lim A_{n}\right)=\lim P\left(A_{n}\right)$. Deduce the result for decreasing events.$(10+10)$
20) a) State and prove central limit theorem for a sequence of i.i.d random variables.
b) Let X_{1}, X_{2} be independent random variables with pdf 's
$\mathrm{f}_{1}\left(x_{1}\right)=\frac{e^{-x_{1} x_{1} m-1}}{(m-1)!} \quad 0<x_{1}<\infty$
$\mathrm{f}_{2}\left(x_{2}\right)=\frac{e^{-x_{2} x_{2}}{ }^{n-1}}{(n-1)!} \quad 0<x_{2}<\infty$
Show that $Y_{1}=X_{1}+X_{2}$ and $Y_{2}=\frac{X_{1}}{X_{1}+X_{2}}$ are independent. (10+10)
21) a)State the postulates of poisson process and hence obtain an expression for $p_{n}(t)$.
b) Obtain the stationary distribution for a Markov chain with transition probability matrix p and states $0,1,2,3 \ldots$.

$$
\mathrm{p}=\left[\begin{array}{llll}
0 & 0 & 1 & 0 \tag{12+8}\\
0 & 0 & 0 & 1 \\
\frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\
0 & 0 & \frac{1}{2} & \frac{1}{2}
\end{array}\right]
$$

22)a) Show that under certain conditions (to be stated) binomial distribution tends to poisson distribution .
b) Show that for normal distribution $\mu_{2 n}=1.3 .5 \ldots \ldots \ldots .(2 n-1) \sigma^{2 n} . n=1,2,---$
c) Let the probability mass function $p(x)$ be positive on $1,2,3 \ldots \ldots$. . Given that $\mathrm{p}(x)=\frac{4}{x} p(x-1), x=1,2,3 \ldots \ldots \ldots$. Find $\mathrm{p}(x)$.

